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Abstract. The primary objective of this study is to assess the es-
timability of the proposed model, referred to as the mixed semipara-
metric switching meta-regression model. The model is expressed as
a Generalized Additive Model (GAM), which accommodates a high-
dimensional set of covariates not usually considered in metadata.
Furthermore, the applicability of the mixed semiparametric switch-
ing meta-regression model in meta-analysis settings is established in
this study.
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1. Introduction

The two popular statistical models for meta-regression are the fixed
effect model, which is the most commonly used [8], and the random effects
model [1]. This study postulates a mixed-effect model that contains both

fixed and random effects, which is not commonly done in meta-analysis.

The model also incorporates switching regression, which is not usually
dealt with in many meta-regression studies but may provide higher mod-
elling flexibility. Switching regression accounts for the possibility that the
study sample may be grouped into two (possibly more groups) and based

on a classifier, regression equation may switch from one group to another.

*This research is supported by Bohol Island State University for the resources and
financial assistance provided, which are necessary for the conduct and completion of this
research work.
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The main objective of this study is to evaluate the estimability of
the proposed model mixed semiparametric switching meta-regression model
expressed as a Generalized Additive Model (GAM) for metadata with a high

dimensional set of covariates.

2. Preliminaries

2.1. Generalized Additive Model

The classical linear regression model is of the form
y=a+X"B+e (1)

For n observations y = (y1,%2,...,yn)" is the target variable (or de-
pendent) and X = x4, ®2, .., Tp is an nep matrix containing vector of p
predictor variables. Moreover, 8 = 31, ..., Bp consists a p dimensional vec-
tor of coefficients that corresponds to each of the predictor variables, « is

the intercept and € is the error term.

The error term € is assumed to be identically and independently nor-
mally distributed with zero mean and constant variance. Aside from these
assumptions, the limitations of the basic linear model also include linear-
ity in the regression equation [4]. The classical model is usually estimated

using ordinary least square method.

A larger class of model that is popularized by McCullagh and Nelder
[10] is the Generalized Linear Model (GLM). It is still of the form (1) but
the assumption does not limit the distribution of ¢ to a normal distribution
but can be any member of the exponential family of distributions (e.g.

Gaussian, Bernoulli, Poisson, Gamma).

The use of GLM is reasonable since a normal distribution, which is
a continuous distribution, is often inadequate when modelling count data

(e.g. proportions, presence or absence of characteristic and frequencies).
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Furthermore, it is superficial to always assume that the variance of the

data is constant in all observations.

In a GLM, the predictor variables x;,j = 1,2,--- , p are linearly com-
bined to have a predictor that is related to the expected value p = E(y) of
the response variable y through a link function g() [4]. The link function

for a linear regression model is
g(EY)=a+X"8 (2)

Aside from the link function, GLM also depends on a variance function

that describes how the variance of y depends on the mean, e.g.

var(y) = ¢V (1) (3)

where ¢ is a constant dispersion parameter. Though GLM does not assume
a direct linear relationship between the response and the predictor variable,
it does assume linear relationship of the transformed responses in terms of

the link function and the linear predictor variables.

GLM is usually estimated using an iterative reweighted least squares
[5], which reduces to MLE with additional assumptions. See [10] for further
details.
The class of GLM is further generalized into Generalized Additive
P
Model (GAM). It replaces the linear predictors n = Zﬁj:cj with additive

i=1
P
smooth functions n = Zsj x;. The response variable y has an exponential
i=1
distribution with mean
p=Eyley, ..., zp) (4)

and the link function

g(u) = a+ij«’Bj (5)
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subject to

Elfj(z;)] =0 (6)

Hastie and Tibshirani [5] used GAM as an alternative model different
from the usual parametric function to mitigate nonlinearities. In addition,
GAM does not assume rigid dependence of the response variable and the
predictor variables. It is a nonparametric model that let the data decide

on functional form.

In estimating the GAM, Hastie and Tibshirani [5] used local scoring
algorithm, a general form of the iterative reweighted least squares algo-
rithm for solving likelihood and nonlinear regression equations. This algo-
rithm estimates the functions f;(z;) nonparametrically using a scatterplot

smoother. Since GAM is flexible, it has the tendency to overfitting.

A conservative degrees freedom of the fitted smooth can be used so
that overfitting can be prevented [2]. Low degrees of freedom of the smooth

can also reduce the computation cost [7].

A smoother is a means of summarizing the relationship between the
dependent variable y and one or more independent variables using the local

average of the observations (z;,y;) [5]-

A scatterplot smooth of the data (x;, y) at the point x; can be viewed
as an estimate of F(y|z;) denoted by S(y|z;). Buja et al. [2] have proven
convergence in the estimation algorithm if the smoothers are linear, sym-
metric and shrinking, that is, § = Sy for some nxn matrix and the eigen-
values of S have absolute values not larger than 1. The cubic smoothing
splines possess these characteristics and it is the solution to the minimiza-

tion problem that follows:

min g i:(yl — f@)? + X @)y a<ay < ..mn <b (7)
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Here f/ is absolutely continuous and f~ € Lg, and X is a fixed tun-
ing constant. The first term represents the least square criterion and it

measures departure of the model from the data.

On the other hand, the second term measures the amount of smooth-
ness in the model. The smoothing parameter A manages the tradeoff be-
tween the two terms, i.e., it controls the goodness of fit and the curvature

of the function.

Cubic splines used in the backfitting algorithm converge to a solution
of the penalized least squares problem:

p

ming Y (i — Y Fi((@50)%) + D N[F (@)d, (8)
i=1 j=1

among functions defined in a Sobolev space.

2.2. The Backfitting algorithm

The backfiiting algorithm or Gauss-Seidel algorithm is a process of

estimating (5) using the following steps [5]:
(i) Initialize: f; = £, =1,2,...,p

(ii) Cycle: 7 =1,2,....,p

fi=Siy—a)=> filz))
Py

(iii) Continue (ii) until individual functions don’t change.

where S; is the smoothing operator.

The algorithm estimates each smooth function while other functions
fixed. Buja et al. [2] showed that there is no need to worry of until in
the last step (iii) in the backfitting algorithm because the right choice of

smoother guarantees convergence.
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2.3. The proposed semiparametric switching
meta-regression model

y' =Y Bjwj+p if hlu)>b 9)
j=1
and
Yy’ =) Bxj+p if hlu)<b (10)

<
Il
a

here h(u) = d 4+ € and § = g(w).

Here y? are the effect estimates of dih regime, x;l are study covariates
(discrete or continuous), ,3? are regression coefficients, and w is the random
component with two sources of variation-the within study error (€), which
is a random imprecision of estimates ; and 6 = g(w), which are explanatory

variables related to study selection.

3. Results

Theorem 3.1 (Estimability of the proposed model). Under a known
regime, the proposed model is estimable via a cubic smoothing spline smoother

for the fized component and the REML for the random component.

Proof. The penalized least square that leads to cubic smoothing spline

minimizes the following:

n [e%¢)

Sl —a(@)? A [ Lo, (1)
i=1 -
with g/ absolutely continuous and g” € Lo. O

According to Green and Yandell [3], (11) can be represented by basis
functions, e.g., quadratic function. The objective function in (11) then

reduces to

argmingQ(g) = |ly — g()|* + Ag" (z) Kg() (12)
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where K = A'C7'A. Here, A is a tridiagonal matrix with

1 1 1 1
Ajj=—Ai=—(—+7— ) Qiita= 13
hi™ (hz‘ " hz‘+1) T i 13)
Also, C is a symmetric tridiagonal matrix with order n — 2 with
hi
Ci—1,,=Cii—1 = i Cii = (hi + hit1) (14)

and h; is the binwidth.

Assuming the inverses exist, Green and Yandell [3] derived the solution

to (12) as:
§(@) = (1+AK) Ly (15)
For a linear smoother S, g can be written in the form g = Sy [2].
Hence, (15) can be expressed as:
§(x) = Sy (16)
where
S=IT+XK)"1 (17)

Provided that symmetric invertible S exist, g can be characterized as

stationarity solution of

argmingQ(g) = |ly — g()|* +Ag" (@)[S™" — I]g(=) (18)
For a smoother with positive real eigenvalues, the solution exists since
Q(g) = 0 [2].

According to Buja et al. [2], the penalized constrained least square
approach can be extended to additive regression by penalizing the residual

sum of square separately for each component function,

Qlg) = I\y—zgj(w)\|2+zgf(w)(5})—1)gj(w) (19)
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and the solution still exists and is computed via the backfitting algorithm.

Furthermore, Buja et al. [2] were able to show convergence of a back-
fitting algorithm.

Now, suppose 0 is estimated as 6 in (10) for a given a single regime

d=1,2, then
Yy =y-0=> fi(v) (20)
1=1

Since (10) is additive and is computed for separate regimes, y* can be y in

(19), i.e., the solution of

m

argmingQ(f) = lly = > £V =)+ 3 Y7 (S; iy (21)
=1

=1
exists.
The solution 3, is determined by REML through an iterative backfit-
ting algorithm. Existence of f is also guaranteed since the modified backfit-

ting algorithm uses cubic smoothing spline which is linear, symmetric and

has positive real eigenvalues.

4. Conclusion

Using cubic splines to smooth the fixed nonparametric functions and
REML to estimate random component, the proposed model is theoretically

proven to be estimable.
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